
Moving Object Tracking in Video

Yiwei Wang and John F. Doherty
Department of Electrical Engineering

The Pennsylvania State University
University Park, PA16802, USA
fyxw131,jfdohertyg@psu.edu

Robert E. Van Dyck
National Institute of Standards and Technology

Gaithersburg, MD20899, USA
vandyck@antd.nist.gov

Abstract

The advance of technology makes video acquisition de-
vices better and less costly, thereby increasing the num-
ber of applications that can effectively utilize digital video.
Compared to still images, video sequences provide more in-
formation about how objects and scenarios change over
time. However, video needs more space for storage and
wider bandwidth for transmission. Hence is raised the topic
of video compression. The MPEG 4 compression standard
suggests the usage of object planes. If the object planes
are segmented correctly and the motion parameters are de-
rived for each object plane accordingly, a better compres-
sion ratio can be expected. Therefore, to take full advantage
of the MPEG 4 standard, algorithms for tracking objects
are needed. It is also obvious that there is great interest in
moving object tracking algorithms in the fields of reconnais-
sance, robot technology, etc. So, we propose an algorithm
to track moving objects in video sequences.

The algorithm first separates the moving objects from the
background in each frame. Then, four sets of variables are
computed based on the positions, the sizes, the grayscale
distributions and the presence of textures of the objects. A
rule-based method is developed to track the objects between
frames, based on the values of the variables. Preliminary
experimental results show that the algorithm performs well.
The tests also show that the algorithm obtains success in
indicating new tracks (object starts moving), ceased tracks
(object stops moving) and possible collisions (objects move
together).

1. Introduction

Because of the advance in technology, there are more
affordable digital video acquisition devices in the market.
This means more applications for digital video. Having
witnessed the success of web camera applications and the
appearance of high definition digital video cameras, we be-

lieve that digital video will soon become a part of every-
day life. Unlike still images, video sequences provide more
information about how objects and scenarios change over
time, but at the cost of increased space for storage and wider
bandwidth for transmission. Therefore, the topic of video
compression have drawn more and more attentions during
recent years. The MPEG 4 standard suggests the usage of
object planes in video compression. By segmenting the ob-
ject planes and determine the motion parameter for each
one correctly, good compression results can be achieved.
Hence, algorithms of tracking objects are needed. Also, in
the context of reconnaissance, robot technology, etc., there
are great interests in moving object tracking algorithms.
Therefore in this paper, we present an algorithm of moving
object tracking.

Many existing algorithms [1]-[4] segment each video
frame to determine the objects; this action can be compu-
tationally expensive, and it is not necessary if the goal is to
determine the moving objects. Alternatively, we proposed
an algorithm [5] that derives the objects based on the motion
between frames. While initial results were promising, the
tracking algorithm in [5] is limited and not able to handle
some complex situations such as new tracks (object starts
moving), ceased tracks (object stops moving) and possible
collisions (objects move together). Therefore, we present
a rule-based method to deal with these situations. The rest
of the paper is organized as follows: Section 2 will review
some necessary background on the wavelet transform and
camera motion models. We will review the algorithm that
we developed in [5] in Section 3 and introduce the tracking
algorithm in Section 4. The experimental results are shown
in Section 5, and the conclusions are given in Section 6.

2. Background

2.1. Wavelet Transform and Filter Banks

Due to the extensive study done on it, the wavelet trans-
form is now a very powerful tool in signal analysis and rele-



vant fields. Unlike some traditional transforms, the Fourier
transform for example, the wavelet transform can achieve
both spatial and frequency localization. In the area of dis-
crete signal analysis, the wavelet transform is closely re-
lated to filter banks. A two-channel filter bank is shown in
Fig. 1 [6].

(a) analysis part

(b) synthesis part

Figure 1. 2-channel wavelet decomposition
and reconstruction structure

For digital images, the signal is two dimensional. There-
fore, in image analysis and compression, two 1-D wavelet
analyses are usually applied to the horizontal and vertical
directions of the images separately; the structures in Fig. 1
are cascaded, as shown in Fig. 2. Using the decomposition
structure in Fig. 2 repeatedly, a wavelet pyramid can be cre-
ated for multi-resolution analysis. A wavelet pyramid of the
image “Lena” is given in Fig. 3 as an example [7].

If we examine Fig. 3 carefully, we can see that in the
high frequency bands, the coefficients have large ampli-
tudes at the location of the edges. This property is some-
times used in edge detection.

2.2. Camera Motion Estimation

In video sequences, the differences between consecutive
frames are usually created by a combination of camera mo-
tion and the movement of objects. Since in this work our
interest is tracking the moving objects, we need to remove
the differences caused by camera motion as much as possi-
ble.

Camera motion has been studied for a long time, and
there are many papers in the literature. The model that we
use is the projective/bilinear model [8][9]. It can charac-
terize almost all possible camera motions, such as transla-
tion, rotation, zooming, panning, tilting, etc. The projective
model is described by eight parameters (m i; i = 1; 2; : : : ; 8)

(a) analysis part

(b) synthesis part

Figure 2. image decomposition and recon-
struction structure

through equation
2
4

u

v

w

3
5 =

2
4

m1 m2 m3

m4 m5 m6

m7 m8 1

3
5
2
4

x

y

1

3
5

where (x; y) is the original coordinates. The transformed
coordinates (x0; y0) can be obtained using equations

x
0
=

m1x+m2y +m3

m7x+m8y + 1
=

u

w
;

y
0
=

m4x+m5y +m6

m7x+m8y + 1
=

v

w
:

The bilinear model, described by the equations below, is an
approximation of the projective model,

x
0
= q1xy + q2x+ q3y + q4;

y
0
= q5xy + q6x+ q7y + q8;

which also uses eight parameters (qi; i = 1; 2; : : : ; 8) to de-
scribe the camera motion.

The estimation is based on the 2-D optical flow assump-
tion given by equation

ufEx + vfEy +Et � 0;

where uf and vf are the velocities along the x and y direc-
tions, while Ex, Ey and Et are the partial derivatives of the



Figure 3. the wavelet pyramid for “Lenna”

gray-scale values with respect to x, y, and t. If we define
um = x

0 � x and vm = y
0 � y, by using the bilinear model

and minimizing

� =

X
(x;y)

(umEx + vmEy +Et)
2
;

we can get the parameters for the bilinear model. Using the
original and the transformed coordinates of four points, we
can approximate the parameters of the projective model.

To lower the computational burden, the above proce-
dure is usually performed on a multi-scale pyramid. Since
we later plan to incorporate the motion registration algo-
rithm into a wavelet-based compression algorithm, we use
a wavelet pyramid instead of the commonly used Laplacian-
Gaussian pyramid.

3. The object isolation algorithm

Although the focus of this paper is the tracking algorithm
presented in the next section, we first give a short review of
the object isolation algorithm introduced in [5].

The algorithm starts with the current frame and the refer-
ence frame. The wavelet transform is applied to each frame
to create a wavelet pyramid and the filter banks and the
number of levels of decomposition are chosen depending
on the size of the frame and the content of the video. The
camera motion model described in the previous section is
applied to the two lowest resolution DC images. Assuming
the moving objects only occupy a small portion of the whole
image, the motion estimation result corresponds mostly to

the background differences. In other words, the above re-
sult is very close to the real camera motion at that level.
Two edge images are then created by adding the amplitudes
of the AC bands of the lowest resolution. The motion pa-
rameters computed above are used to align the edge images
and the differences are calculated. Because the differences
at the location of the moving objects are larger, the lowest
resolution images can be roughly segmented into possible
object and background regions by thresholding the differ-
ences. Furthermore, we apply the motion estimation algo-
rithm only to the possible background areas to achieve a
more accurate camera motion estimation. After we finish
processing the level of the lowest resolution, we repeat the
above procedure on higher resolution levels. The DC bands
of a higher resolution level can be created from the lower
resolution level using synthesis filters. The corresponding
motion parameters from the lower resolution level are used
as initial values for a higher resolution level, and only the
parts of images that have been classified as background ar-
eas in the lower resolution levels are considered. Basically,
the algorithm will select more areas as possible object re-
gions when the resolution gets higher, until it reaches the
highest resolution level. A flowchart of the procedure is
given in [5].

The above procedure will produce possible object blocks
of different sizes. Some of the blocks are obtained due to
moving objects, while others are just the result of noise. To
group the blocks of the same moving object together and
eliminate the noise effect, we developed a projection-based
algorithm denoted the “gap”/“mountain” method. We start
with the edge image at the highest resolution level and all
pixels classified to the background are set to zero. A column
vector is then created by adding the pixel values for each
row. It is obvious that a zero element in that column vector
means that there are no object pixels in the corresponding
row. A “gap” is defined as consecutive zeros whose number
is larger than a preset threshold and the group of elements
between two “gaps” is defined as a “mountain”. The ele-
ment with the largest value in each “mountain” is called a
“peak”. If the width of a “mountain” is larger than a preset
threshold and its “peak” is high enough, we conclude that
there is at least one object in the “mountain”. For an origi-
nal edge image of p � q pixels, the above procedure places
all the possible objects in m smaller matrices; each matrix
has q columns, while the number of rows is equal to the size
of the “mountain”. Furthermore, if we apply the same idea
to these matrices and add the values for each row instead
of each column, the total size of the matrices that contain
the objects will become even smaller. The same algorithm
is applied iteratively until the total size of the matrices does
not change any more. Each final matrix will be considered
as an object location. In summary, by adding along columns
and rows repeatedly, we are able to obtain several rectangles



that each contains an isolated object.
To illustrate the above “gap”/“mountain” method more

clearly, Fig. 4 is given as an example. A 100 by 100 binary
image containing two objects is shown in Fig. 4(a). One ob-
ject is 20 by 20 and the other one is 15 by 30. The grayscale
value is zero for the background and is one for the objects.
A column vector of 100 elements is created by adding the
value of pixels in each row. We plot it in Fig. 4(b). By set-
ting the thresholds for “gap” width and “mountain” width
to be 10, we can see that there are three “gaps” and two
“mountains”. Since the objects must be in “mountains”, in-
stead of knowing the possible objects are in the initial 100
by 100 matrix, now we know that they are in two smaller
matrices. The size for the first one is 20 by 100 and the size
for the second one is 15 by 100. Then, we apply the same
idea to these two smaller matrices one by one. Instead of
adding the values for each row, we now add along columns
and detect the “gaps” and “mountains” in the correspond-
ing row vectors. The algorithm is applied iteratively until
the sizes of matrices do not change anymore. In this exam-
ple, we need three steps. The left, right, top, and bottom
boundary locations for the first object are 21, 40, 16 and 35,
respectively, and those for the second object are 56, 85, 61
and 75.

To achieve accurate results, both the preceding frame and
the following frame are used as the reference frame. The
mutual object areas detected in the current frame are then
considered as the final results.

4. The tracking algorithm

Once the object areas are determined in each frame, the
tracking algorithm is needed to trace the objects from frame
to frame. In this section, we will present a rule-based algo-
rithm using the information of the object trajectories, sizes,
grayscale distribution, and textures. Variables based on the
information are first computed, and then the tracking results
are decided based on variable values.

The variables for object trajectories are the object
position coordinates. To decide the object position, we
define the centroid of an object (cx; cy) as

cx = (

X
(i;j)2O

pi;j � i)=(

X
(i;j)2O

pi;j);

cy = (

X
(i;j)2O

pi;j � j)=(

X
(i;j)2O

pi;j);

whereO is the set of coordinates of an object area and p i;j

is the value of the edge image at position (i; j). Each object
is then corresponding to a point. Furthermore, we assume
that the object trajectories are close to straight lines in a few
adjacent frames and the object acceleration rate is a constant
in these frames. The object location coordinates from the

(a) the example image

(b) the plot of the column vector

Figure 4. an example of the “gap” / “moun-
tain” method

previous three frames are used to compute v and a in the
equation

S = vt+
1

2
at

2
;

where v is the initial speed and a is the acceleration rate.
Then, the values of v and a are used to predict the locations
in the current frame. By comparing the predicted positions
and real positions, it is possible to achieve trajectory-based
tracking.

Assuming the frame rate is adequate, the sizes of the
objects should not change dramatically between adjacent
frames. The dispersion variable is used for tracking the ob-
jects based on size. The dispersion of an object, disp, is
defined as

disp = (

X
(i;j)2O

q
(i� cx)

2 + (j � cy)
2�pi;j)=(

X
(i;j)2O

pi;j);

where (cx; cy) is the object centroid, whileO and pi;j have
the same definition as in the equations that defined the cen-



troid. When the dispersions are computed in each frame,
we can track the objects by comparing them.

The grayscale distribution of an object usually does not
change too much, given that the lighting condition stays
relatively constant between consecutive frames. In other
words, the span of grayscale values for the same object is
similar from frame to frame. The variables that we use,
based on grayscale distribution, are the mean of the whole
grayscale range grm, the mean of the 10% pixels of largest
grayscale value grh, and the mean of the 10% pixels of
smallest grayscale value grl. These three variables will in-
dicate the grayscale span of the object. Hence, grayscale-
based tracking can be achieved by matching the variables
of the objects in different frames.

The last variable is based on object texture. The surfaces
of the objects are usually not homogeneous. If we consider
the grayscale variations on the object, they are usually dif-
ferent from object to object. These differences are reflected
in the wavelet transform coefficients. A variable, denoted
tx, that can roughly indicate the texture property of an ob-
ject is the mean of the 10% of the pixels with the largest
values in the constructed “edge” image. Generally speak-
ing, large values indicate more textures on the object.

Because there are extremes that violate the assumptions
that we have made, it is obvious that none of the above four
sets of variables will be accurately tracking the objects all
the time. Therefore, we cannot just depend on one set of the
variables and need to integrate four sets together.

In the current frame, each object is associated with four
sets of variables. Each existing track in the previous frame
will also produce four sets of variables. Therefore, the
tracking problem becomes finding the best matches be-
tween the objects and the existing tracks. A natural way
to do this is to compute the differences between the variable
values and then threshold the differences. If there are m ob-
jects in the current frame and n existing tracks, there will be
a total of m�n sets of differences to evaluate. Considering
the situations of new tracks, ceased tracks and track colli-
sions, we have to make sure that the variables of an object
are similar to those of an existing track when we extend the
track to that object. Since we have four sets of variables,
the first rule that we use is that at least three sets of differ-
ences must be less than the threshold. Otherwise, we will
not consider that object as a possible extension for the track.

After we evaluatem�n sets of differences, we will have
a matrix of size m�n. The elements of the matrix indicate
how many sets of variable differences between the specific
object and the certain track are less than the threshold. As
indicated in the previous paragragh, an element greater than
2 corresponds to a possible track extension. However, it
is obvious that there usually will not be one and only one
eligible element in each row and each column of the matrix.
Therefore, we develop the following strategy.

First, we start from the simple cases. If an element is
the only one eligible in its row and its column, there is no
ambiguity. We simply extend the corresponding track to the
corresponding object and simplify the matrix by eliminat-
ing the row and the column that the element is in. Second,
suppose ei;j is the only eligible element in row i, if all other
eligible elements in column j are not the only element in
their corresponding rows, we will extend track j to object
i and eliminate the ith row and jth column to simplify the
matrix. A similar procedure is performed when e i;j is the
only eligible element in column j and all other eligible el-
ements in row i are not the only one in their corresponding
columns. After using the above two rules repeatedly, the el-
igible elements left in the matrix correspond to complicated
situations that cannot be solved using simple thresholding.
We then adopt a weighted sum as the cost function, which
is described by the equation

dif = wtr(jc
f
x � c

t
xj+ jcfy � c

t
yj)

+wdisp(jdisp
f
� disp

t
j)

+wgr(jgr
f

l � gr
t
l j+ jgrfm � gr

t
mj+ jgr

f

h � gr
t
hj)

+wtx(jtx
f � tx

tj);

where dif is the cost function, wtr ; wdisp; wgr; wtx are the
weights, and superscripts f and t indicate whether the vari-
able is computed from the current frame or the track. For
each eligible element in the matrix, a weighted sum is com-
puted. Then for each column, the row producing the small-
est dif value is selected, which is equivalent to finding the
best matching object of an existing track.

Sometimes, after the process described above, there will
be tracks and objects left with no matches. These situations
often correspond to new tracks, ceased tracks, and track col-
lision. We first consider the possibility of track collision by
examining the variable values. If the mean values of the pre-
dicted positions of several existing tracks are “close” to one
of the objects’(compatible with the dispersion values), we
then evaluate the dispersion values. If the object dispersion
value is larger than the largest dispersion value of the tracks
and smaller than the summation of the dispersion values of
all those tracks, we will mark the object and the tracks as
possible track collision. The rest of unmatched objects and
tracks are then labeled as new tracks and ceased tracks.

An example is given here to make the above procedure
clearer. If after the thresholding, the matrix is

2
6666664

4 2 0 1 1

1 3 2 4 1

2 0 4 1 3

0 1 1 3 2

1 2 3 0 3

0 1 0 0 2

3
7777775
;

where each element indicates how many sets of variables
are smaller than the corresponding thresholds. From the



matrix, we can see that there are five existing tracks and
six objects in the current frame. e1;1, which is 4, is the
only eligible element in the first row and the first column.
Therefore, we extend the first track to the first object. The
matrix is then simplified to

2
6666664

� � � � �

� 3 2 4 1

� 0 4 1 3

� 1 1 3 2

� 2 3 0 3

� 1 0 0 2

3
7777775
:

In the new matrix, e4;4, which is 3, is the only eligible el-
ement in row 4. Although e4;4 is not the only element in
column 4, the other element is in row 2, a row that has more
than one eligible elements. Hence, using rule number two,
we extend the fourth track to the fourth object and simplify
the matrix as 2

6666664

� � � � �

� 3 2 � 1

� 0 4 � 3

� � � � �

� 2 3 � 3

� 1 0 � 2

3
7777775
:

After using the first rule again, the matrix becomes
2
6666664

� � � � �

� � � � �

� � 4 � 3

� � � � �

� � 3 � 3

� � 0 � 2

3
7777775
:

Now, assuming difi;j is the weighted sum for ei;j , if
dif3;3 > dif5;3 and dif3;5 < dif5;5, then the third track
is extended to the fifth object and the fifth track is extended
to the third object. Now the matrix is

2
6666664

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

3
7777775
:

Since all the tracks have been extended, the sixth object is
then considered the beginning of a new track. The final
results are (1; 1); (2; 2); (3; 5); (4; 4); (5; 3); (6; 6

�
), where

(i; j) means object i is corresponding to track j and � indi-
cates new track.

5. Experimental results

The above algorithm is tested on the “toy vehicle” se-
quence. The frame size is 512 by 512. Nine consecutive

(a) frame 1 (b) frame 2 (c) frame 3

(d) frame 4 (e) frame 5 (f) frame 6

(g) frame 7 (h) frame 8 (i) frame 9

Figure 5. frames in the toy vehicle sequence

frames are shown in Fig. 5.
Fig. 6. illustrates the object isolation algorithm de-

scribed in section 3. The algorithm is applied to frame 4
and frame 5. We choose Daubechies’ 5/7 biorthogonal fil-
ters and use four levels of wavelet decomposition. We high-
light the objects in Fig. 6. by adding special effects to the
images. It is obvious that two moving objects are detected
in each frame.

The algorithm is performed on every frame to isolate the
objects. Then, the tracking algorithm presented in section 4
is used. The tracking results are given in Table 1. The same
object in different frames is labeled with the same object ID
number to indicate a track. Centroid values are also given
to provide the location information of the object.

Evaluating Table 1, we can see that the algorithm suc-
cessfully tracks two toy vehicles as they approach each
other and then separate. Two comments are worth men-
tioning about Table 1. First, in the starting three frames, the
characteristics of the toy vehicle emerging from the right
change considerably because of occlusion. So, the algo-
rithm does not pick up the track. However, as all of the
object begins to appear in the image, the tracking results
are correct in frame 4 and frame 5. Second, in frame 6,
neither of the existing tracks matches the new object. How-
ever, as the mean of the predicted positions from the tracks
is (140.7, 338.2), which is close to the centroid of the ob-



(a) frame 4

(b) frame 5

Figure 6. detected object areas in frame 4 and
frame 5

ject (135.5, 332.1), we evaluate the dispersions of the object
and the tracks. The dispersion for the new object is 66.0
while those for the two tracks are 35.2 and 42.5. Because
42:5 < 66:0 < 35:2+42:5 = 77:7, we can claim that there
is possible track collision in frame 6.

6. Conclusion and comments

In this paper, we first reviewed an algorithm to isolate
the moving objects in video sequences and then presented a
rule-based tracking algorithm. The preliminary experimen-
tal results demonstrate the effectiveness of the algorithm
even in some complicated situations, such as new track,
ceased track, track collision, etc.

The goal of the algorithm is to identify and track the
moving object quickly. However, the projective model for

Table 1. Tracking results

Frame No. Obj. ID Centroid Obj. ID Centroid

1 1 (53.2, 295.4) - -
2 1 (51.8, 303.4) - -
3 1 (53.2, 310.4) 2 (377.1, 336.9)
4 1 (66.5, 317.6) 3 (325.4, 338.6)
5 1 (79.7, 326.5) 3 (257.0, 338.9)
6 4 (135.5, 332.1) - -
7 4 (135.1, 334.8) - -
8 4 (144.2, 336.6) - -
9 5 (96.9, 313.5) 6 (283.3, 353.5)

camera motion is somewhat computational expensive. It
cannot deal with occlusion very well either. Therefore, we
will investigate ways to adopt other faster and more robust
camera motion estimation methods, such as feature-based
algorithms.

References

[1] D. Wang, Unsupervised Video segmentation Based On Watersheds
And Temporal Tracking, IEEE Trans. Circuits Syst. Video Technol.,
8(5):539-546, September 1998.

[2] G. L. Foresti, Object Recognition And Tracking For Remote Video
Surveillance, IEEE Trans. Circuits Syst. Video Technol., 9(7):1045-1062,
October 1999.

[3] P. Salembier, F. Marqu�es, M. Pard�as, J. R. Morros, I. Corset, S.
Jeannin, L. Bouchard, F. Meyer, B. Marcotegui, Segmentation-Based
Video Coding System Allowing The Manipulation Of Objects, IEEE
Trans. Circuits Syst. Video Technol., 7(1):60-74, February 1997.

[4] A. J. Lipton, H. Fujiyoshi, R. S. Patil, Moving Target Classification
And Tracking From Real-time Video, Applications of Computer Vision,
1998. WACV ’98. Proceedings., Fourth IEEE Workshop on, pp. 8-14,
1998.

[5] Y. Wang, R.E. Van Dyck, J. F. Doherty, Tracking Moving Objects in
Video Sequences, Proc. Conference on Information Sciences and Systems,
Princeton, NJ, March 2000.

[6] M. Vetterli, J. Kovacevic, Wavelets And Subband Coding, Prentice-
Hall, INC., Upper Saddle River, NJ, 1995.

[7] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, Image
Coding Using Wavelet Transform IEEE Trans. on Image Processing,
1(2):205-220, April 1992.

[8] S. Mann, R. W. Picard, Video Orbits of The Projective Group: A
Simple approach To Featureless Estimation Of Parameters, IEEE Trans.
on Image Processing, 6(9):1281-95, September 1997.

[9] S. Lertrattanapanich, N. K. Bose, Latest Results On High-resolution
Reconstruction From Video Sequence, Technical Report Of IEICE.
DSP99-140, pp. 59-65, December 1999.


